IDWeek, October 16-20, 2024, Los Angeles, CA, USA

Submission deadline: May 7, 2024, 11.59 PM ET

Lack of Association Between Cardiovascular Events and
Tixagevimab/Cilgavimab for COVID-19 Pre-Exposure
Prophylaxis: Potential Implications for Future Long-Acting
Antibodies

Toni Rush,¹ Carla Talarico,² Sudhir Venkatesan,³ Nicholas M. Sicignano,⁴ Aaron W.C. Kamauu,⁵ Amanda R. Shields,⁶ Cátia Ferreira,⁷ Lisa Glasser,⁷ Sylvia Taylor,⁸ Eric Schwartzman,⁹ Jess Edison¹⁰

¹Department of Medicine, Uniformed Services University of the Health Sciences,
Bethesda, MD, USA; ²Medical Evidence, Vaccines & Immune Therapies,
BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD, USA; ³BPM Evidence
Statistics, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK; ⁴Health
ResearchTx LLC, Trevose, USA; ⁵Ikaika Health, Bountiful, UT, USA; ⁶Ikaika Health,
Chapel Hill, NC, USA; ⁷Vaccines & Immune Therapies, BioPharmaceuticals Medical,
AstraZeneca, Wilmington, DE, USA, ⁸Medical Evidence, Vaccines & Immune
Therapies, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK; ⁹Naval
Medical Center Portsmouth, Portsmouth, VA, USA; ¹⁰Walter Reed National Military
Medical Center, Bethesda, MD, USA

Name	Degree(s)	Email	Affiliation
Toni Rush	PhD, MPH	tonimrush@gmail.com	Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
Carla Talarico	PhD, MPH	carla.talarico@astrazeneca.com	Medical Evidence, Vaccines & Immune Therapies, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD, USA
Sudhir Venkatesan	PhD, MPH	sudhir.venkatesan@astrazeneca.com	BPM Evidence Statistics, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
Nicholas M Sicignano	MPH	sicignano@healthresearchtx.com	Health ResearchTx LLC, Trevose, PA
Aaron WC Kamauu	MD MS MPH	aaron.kamauu@ikaikahealth.com	Ikaika Health, Bountiful, UT, USA
Amanda R Shields	ВА	amanda.shields@quantenconsultants.c om	Ikaika Health, Chapel Hill, NC, USA
Cátia Ferreira	PhD	catia.ferreira2@astrazeneca.com	Vaccines & Immune Therapies, BioPharmaceuticals Medical, AstraZeneca, Wilmington, DE, USA
Lisa Glasser	MD	lisa.glasser@astrazeneca.com	Vaccines and Immune Therapies, BioPharmaceuticals Medical, AstraZeneca, Wilmington, DE, US
Sylvia Taylor	PhD, MPH, MBA	sylvia.taylor@astrazeneca.com	Medical Evidence, Vaccines & Immune Therapies, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
Eric Schwartzman	MD, FACC, FHRS	eric.l.schwartzman.civ@health.mil	Naval Medical Center Portsmouth, Portsmouth, VA
Jess Edison	MD	jess.d.edison.mil@health.mil	Walter Reed National Military Medical Center, Bethesda, MD

Character count: 1922 (limit: 1950 characters)

Background

In the PROVENT (NCT04625725) clinical trial of the long-acting monoclonal antibody combination tixagevimab/cilgavimab (AZD7442) versus placebo for pre-exposure prophylaxis (PrEP) against COVID-19, a numerical imbalance was observed in serious cardiac disorders between AZD7442 (23 [0.7%] participants) and placebo (5 [0.3%]) at the 6-month follow-up (2:1 randomization). No clinical/temporal patterns were observed, and no imbalance was observed in other AZD7442 trials. This retrospective cohort study assessed AZD7442 cardiovascular safety in immunocompromised patients who received AZD7442 PrEP, using data from a large US integrated health system.

Methods

Immunocompromised individuals eligible for AZD7442 PrEP under the previous US Emergency Use Authorization (EUA) between December 8, 2021, and January 26, 2023, were identified within the US Department of Defense Military Health System, including active military personnel and their beneficiaries. Individuals exposed to AZD7442 600 mg were propensity score (PS)-matched (1:1) to unexposed individuals using a "rolling cohort" approach. Conditional Cox regression was used to estimate hazard ratios and 95% confidence intervals for the effect of AZD7442 on each of heart failure, myocardial infarction, stroke, and deep vein thrombosis.

Results

Of 1,030,167 EUA-eligible individuals, 2362 AZD7442-exposed individuals were matched 1:1 to eligible unexposed individuals (**Table 1**). PS matching resulted in overall balance (standardized mean difference ≤ 0.1) in baseline characteristics between AZD7442-exposed and unexposed individuals. AZD7442 exposure was not associated with any of the assessed cardiovascular outcomes (**Table 2**), and results were similar among individuals who did versus did not have a history of these events.

Conclusions

After controlling for baseline cardiovascular risk, no difference was found in the rates of heart failure, myocardial infarction, stroke, or deep vein thrombosis among individuals who did versus did not receive AZD7442 600 mg. Similar results were observed among individuals with or without a history of cardiovascular events. These results further support the safety of AZD7442 PrEP and potential future long-acting COVID-19 PrEP monoclonal antibodies.

Disclosures

T.R. has no conflicts to disclose.

A.R.S. and A.W.C.K. are contractor and member, respectively, of Ikaika Health,

which was funded by AstraZeneca for this work.

C.T., S.V., C.F., L.G., and S.T. are employees of, and may hold stock and/or stock

options in, AstraZeneca.

N.M.S. is an employee of Health ResearchTx LLC, which received funding from

AstraZeneca to execute this work on behalf of AstraZeneca.

E.S. is a retired military service member and has received no funding.

J.E. is a military service member and has received no funding. This work was

prepared as part of his official duties. Title 17 U.S.C. 105 provides that "Copyright

protection under this title is not available for any work of the United States

Government." Title 17 U.S.C. 101 defines a United States Government work as a

work prepared by a military service member or employee of the US Government as

part of their official duties. The identification of specific products or scientific

instrumentation is considered an integral part of the scientific endeavor and does not

constitute endorsement or implied endorsement on the part of the author, DoD, or

any component agency. The views expressed in this presentation are those of the

authors and do not necessarily reflect the official policy of the Defense Health

Agency, Department of Defense, or the US Government.

Presenting author: Toni Rush

Presentation preference: Oral

Keywords (1-3 from prespecified options; need to log in to see options):

COVID-19, monoclonal antibody, patient safety

Abstract subject category (choose up to 2: https://idweek.zendesk.com/hc/en-us/articles/1500002253822-Session-and-Abstract-Subject-Categories):

Z2. COVID: Infection prevention

Acknowledgements/Funding: This study was funded by AstraZeneca.

Table 1. Baseline characteristics for the PS-matched population

	PS-matched study cohort				
	Total	AZD7442	Non-AZD7442 n=2362		
Baseline patient characteristics ^a	N=4724	n=2362			
Age, mean, SD (years)	63.8 (16.4)	63.7 (14.4)	64.0 (18.1)		
Female, n (%)	2402 (50.9)	1203 (50.9)	1199 (50.8)		
VA Frailty Index, n (%)					
Non-frail	1611 (34.1)	752 (31.8)	859 (36.4)		
Pre-frail	1647 (34.9)	915 (38.7)	732 (31.0)		
Mildly frail	954 (20.2)	476 (20.2)	478 (20.2)		
Moderately frail	395 (8.4)	173 (7.3)	222 (9.4)		
Severely frail	117 (2.5)	46 (2.0)	71 (3.0)		
CCI score, mean (SD)	6.3 (4.0)	6.3 (3.7)	6.3 (4.4)		
Number of outpatient visits, mean (SD)	46.6 (46.1)	46.3 (38.5)	46.9 (46.9)		
Number of inpatient visits, mean (SD)	0.5 (1.1)	0.5 (1.1)	0.5 (1.1)		
Baseline CV conditions, n (%)					
Heart failure	496 (10.5)	257 10.9)	239 (10.1)		
Deep vein thrombosis	347 (7.4)	174 (7.4)	173 (7.3)		
Myocardial infarction	107 (2.3)	56 (2.4)	51 (2.2)		
Stroke	188 (4.0)	95 (4.0)	93 (3.9)		
Immunocompromising conditions, ^b n (%)					
Solid tumor malignancy	597 (12.6)	307 (13.0)	290 (12.3)		
Hematologic malignancy	662 (14.0)	331 (14.0)	331 (14.0)		
Organ transplant	503 (10.7)	269 (11.4)	234 (9.9)		
Stem cell transplant	81 (1.7)	55 (2.3)	26 (1.1)		
Primary immunodeficiency	194 (4.1)	104 (4.4)	90 (3.8)		

AIDS/HIV	4 (0.1)	2 (0.1)	2 (0.1)
Therapeutically induced immunosuppression	1319 (27.9)	660 (27.9)	659 (27.9)

^aDemographics were assessed during the 1 year prior to the index date. Immunocompromising conditions were defined as at least one diagnosis code within the year prior to the index date. Medications were defined as at least one dispensing within 1 year prior to the index date.

^bStudy eligibility required patients to have ≥1 baseline immunocompromising condition(s). AIDS, acquired immunodeficiency syndrome; CCI, Charlson Comorbidity Index; CV, cardiovascular; HIV, human immunodeficiency virus; PS, propensity score; SD, standard deviation; VA, Veterans Affairs.

Table 2. AZD7442 exposure and CV outcomes

	Number of patients		Number of events		HR	95% CI
CV Outcome	AZD7442	Unexposed	AZD7442	Unexposed		
Heart failure						
Overall	2362	2362	223	215	1.04	(0.87, 1.24)
Incident events	2017	2049	61	58	1.07	(0.75, 1.53)
Prevalent events	345	313	162	157	0.88	(0.71, 1.10)
Deep vein thrombosis						
Overall	2362	2362	113	96	1.18	(0.91, 1.53)
Incident events	2118	2152	40	26	1.57	(0.96, 2.57)
Prevalent events	244	210	73	70	0.86	(0.62, 1.19)
Myocardial infarction						
Overall	2362	2362	36	45	0.79	(0.52, 1.20)
Incident events	2272	2270	21	34	0.61	(0.35, 1.05)
Prevalent events	90	92	15	11	1.39	(0.64, 3.05)
Stroke						
Overall	2362	2362	73	95	0.76	(0.56, 1.03)
Incident events	2202	2195	42	54	0.77	(0.52, 1.16)
Prevalent events	160	167	31	41	0.74	(0.46, 1.17)