# **Development of Computable Operational Definitions to Maximize Comparability & Consistency Across a Multi-Data Source Global Real-World Effectiveness Program**

## <u>Aaron WC Kamauu</u>,<sup>1</sup> Craig G Parker,<sup>2</sup> Amanda R Shields,<sup>3</sup> Lisa Glasser,<sup>4</sup> Sabada Dube,<sup>5</sup> Carla Talarico,<sup>6</sup> Sylvia Taylor<sup>5</sup>

<sup>1</sup>Ikaika Health, Bountiful, UT, USA; <sup>4</sup>Medical Affairs, Vaccine & Immune Therapies, AstraZeneca, Cambridge, UK; <sup>6</sup>Epidemiology, Vaccines & Immune Therapies, BioPharmaceuticals Medical Affairs, Vaccines & Immune Therapies, BioPharmaceuticals Medical Evidence, Vaccine & Immune Therapies, BioPharmaceuticals Medical Affairs, Vaccines & Immune Therapies, BioPharmaceuticals & Immune Therapies, B BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD, USA

#### Disclosures

• A.K., C.P., and A.S. are partners and owners of Navidence LLC, which is subcontracted via Ikaika Health LLC to provide support to AstraZeneca for various projects and studies • L.G., S.D., C.T., and S.T. are employees of AstraZeneca

# Introduction

- AZD7442, a combination of monoclonal antibodies (tixagevimab/cilgavimab), received emergency use authorization by the FDA in December 2021 for pre-exposure prophylaxis (PrEP) against COVID-19 in patients who are moderately to severely immunocompromised (IC)
- Essential real-world effectiveness assessment is challenged by heterogeneous definitions of IC eligibility, drug distribution differences, inconsistent clinical practices, record-keeping, and availability and completeness of key data across geographic regions/countries and data sources

# **Objective**

• Develop data source-agnostic computable operational definitions (cODs) to support a multinational, multi-data source real-world effectiveness program

# **Key Take-Home Message**

Туре

grouping 0

intensional 0

intensional 1257

Exten

Computable operational definitions support a *multi-data source global* real-world effectiveness program:

- Direct clear and consistent queries across data sources
- Standards-based code lists/value sets
- References for justification of operational definitions and code list mappings (specific to the study element type)
- Context for comparison and interpretation of results across and between data sources

### Conclusions

- Every data source is distinct within and across geographic regions/countries, and the unique context is important to the interpretation of results
- Data source-agnostic cODs are foundational to maximize consistency across data sources and countries, comparability of study results, and support reproducibility, even when context may vary
- The authors advise thoughtful creation of clear, consistent, standards-based cODs for all real-world evidence studies, especially those using multiple data sources and/or those submitting evidence to external stakeholders (e.g., regulatory agencies)

## Methods

#### 1. Data source-agnostic cODs were established for each of the study elements of the umbrella protocol: eligibility criteria, exposure, baseline characteristics, and outcome measures



- 3. cODs were tailored to reflect differences for each data source
- Selected data sources are completing the analysis independently of each other to ensure context and uniqueness of the underlying health system are accounted for

#### Figure. Leveraging data source-agnostic cODs to create data source-specific cODs



Outcome measures cODs

|     | Components of a cOD:                                                            | ≥ 1 Medication Record from Cancer<br>Therapies within the 6 months prior to | Any Malignancy, except malignant neoplasm of skin (CCI) Diagnoses (SNOMED)                   | extensional 716 | Data source C ——                                                                                                        |
|-----|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------|
|     | Data variable                                                                   | the index date                                                              | Metastatic Solid Tumor (CCI) Diagnoses<br>Metastatic Solid Tumor (CCI) Diagnoses (ICD-10-CM) | intensional 69  | Outcome measures cC                                                                                                     |
|     | Quantity/magnitude                                                              |                                                                             | Metastatic Solid Tumor (CCI) Diagnoses (ICD-9-CM)                                            | intensional 0   |                                                                                                                         |
|     | <ul> <li>Target value, concept, or code list/value set</li> </ul>               |                                                                             | Metastatic Solid Tumor (CCI) Diagnoses (SNOMED)                                              | extensional 51  | 4. Development of cODs was an iterative process and included:                                                           |
|     | Time period qualifier                                                           |                                                                             | Cancer Therapies                                                                             | grouping 0      | <ul> <li>review of literature and published protocols</li> </ul>                                                        |
|     | • Other qualifiers based on the data variable or type of operational definition |                                                                             | Cancer Therapies (ATC)                                                                       | extensional 263 | <ul> <li>input from epidemiology, statistics, informatics, and medical teams</li> </ul>                                 |
|     | Expression to describe how the components relate to each other                  |                                                                             | Cancer Therapies (Name)                                                                      | extensional 263 | <ul> <li>– clinical concepts represented by commonly structured data types and standard validated code lists</li> </ul> |
| N N |                                                                                 |                                                                             | Cancer Therapies (RxNorm)                                                                    | extensional 258 |                                                                                                                         |

# **Results and interpretation**

- cODs for 174 study elements were developed for the umbrella study protocol:
- 17 eligibility criteria
- 1 exposure
- 68 baseline characteristics
- 88 outcomes (for 16 objectives)

# Limitations

- This program was conducted within the context of a large global real-world effectiveness program covering several data sources across the US, Israel, and specific countries in the EU. Therefore, it does not include countries across all regions of the world, which may limit generalizability of results
- However, the authors suggest that these methods of using clear, consistent, standards-based cODs would provide greater value for programs conducted across more regions of the world

#### · The cODs encompass 38 distinct data variables and 82 standards-based code lists (further delineated by a code system)

| Label                                  | Code                              | Essential |
|----------------------------------------|-----------------------------------|-----------|
| Age                                    | age                               | True      |
| Date of Birth                          | date_of_birth                     | True      |
| Death Record                           | death_record                      | True      |
| Encounter Disposition                  | encounter_disposition             | True      |
| Encounter Record                       | encounter_record                  | True      |
| Enrollment End Date                    | enrollment_end_date               | True      |
| Enrollment Start Date                  | enrollment_start_date             | True      |
| Sex                                    | sex                               | True      |
| T-cell helper (CD4) subset panel (Bld) | 65758-5                           | True      |
| Vaccination Record                     | vaccination_record                | True      |
| Admission Date                         | admission_date                    | False     |
| Alcohol Use                            | alcohol_use                       | False     |
| Area deprivation index                 | area_deprivation_index            | False     |
| Body Mass Index                        | body_mass_index                   | False     |
| Cancer Screening Encounter Record      | cancer_screening_encounter_record | False     |
| COVID-19 Lab Tests                     | covid-19_lab_tests                | False     |
| Diagnosis Record                       | diagnosis_record                  | False     |
| Discharge Date                         | discharge_date                    | False     |
| Eligible Dependents                    | eligible_dependents               | False     |
| Immunization record                    | immunization_record               | False     |
| Insurance type                         | insurance_type                    | False     |
| Isolation event                        | isolation_event                   | False     |
| Marital Status                         | marital_status                    | False     |
| Median household salary                | median_household_salary           | False     |
| Medication Record                      | medication_record                 | False     |

#### • Direct comparisons across data sources were demonstrated to highlight differences in cODs and their potential impact on the interpretation of analysis results



- While this program resulted in the creation of cODs that cover a variety of medical conditions (either as immunosuppressive conditions for eligibility, many medical conditions as possible comorbidities, or as select effectiveness or safety outcomes), this did not include all disease therapy areas, nor the distinct subtypes of all related medical conditions
- The authors advise thoughtful creation of clear, consistent, standards-based cODs for medical conditions that are relevant to individual clinical research needs and purpose
- In addition, the authors advise leveraging cODs with the appropriate context of the study element. For example, different cODs may be appropriate for the same clinical condition/conceptual definition, when applied as an inclusion criterion versus a baseline comorbidity versus an outcome measure

#### Supplementary content



Please scan this quick response (QR) code with your smartphone camera or app to obtain a copy of this poster. Alternatively, please click on the link below: https://bit.ly/3Qiyuyv

Copies of this poster obtained through this QR code are for personal use only and may not be reproduced without permission.

#### Acknowledgments

This project was supported by AstraZeneca. The authors would like to acknowledge Megan Somerday and Allise Kamauu for their contributions in support of this project.

- All data sources required some adaptation, primarily on coding schemas or definitions unique to the data source
- Examples of coding schemes include:

• Diagnosis codes: ICD-10-CM, ICD-9, SNOMED

- Procedure codes: ICD-10-PCS, ICD-9, CPT, HCPCS
- Medication codes: RxNorm, ATC-5 (as well as generic and trade names)
- Examples of unique definitions between data sources:
- IC alignment with national eligibility requirements (e.g., PrEP vs Treatment, IC definitions)
- Setting of AZD7442 administration (e.g., inpatient vs outpatient; IC speciality care vs infectious disease department)
- Patient/population characteristics: socioeconomic status, geographic distribution, common healthcare practices

#### **Abbreviations and codes**

ATC-5, Anatomical Therapeutic Chemical 5th level; CCI, Charlson Comorbidity Index; CM, Clinical Modification; cOD, computable operational definition; COVID-19, coronavirus disease 2019; CPT, Current Procedural Terminology; EUA, Emergency Use Authorization; FDA, The US Food and Drug Administration HCPCS, Healthcare Common Procedure Coding System; IC, immunocompromised; ICD-9, International Classification of Diseases, 9th Revision; ICD-10, International Classification of Diseases, 10th Revision; LOINC, Logical Observation Identifiers Names and Codes; PCR, polymerase chain reaction; PCS, Procedure Coding System; PrEP, pre-exposure prophylaxis; RxNorm, standardized nomenclature for clinical drugs; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SNOMED, Systematized Nomenclature of Medicine.

Presented at the 39th International Conference on Pharmacoepidemiology & Therapeutic Risk Management (ICPE) | August 23–27, 2023, Halifax, Nova Scotia, Canada